
Collaborative Filtering of Multi-component
Rating for Recommender Systems

Abstract

The dependency structure among the rating components is discovered and incorpo-
rated into a mixture model and parameters of the model were estimated using Expec-
tation Maximization. The algorithm is evaluated using data collected from Yahoo
Movies. Improved recommendations were found using multiple components over using
only one component when very little training data is used. However, no gain was
found when enough training data were available.

1 Introduction

Collaborative filtering is becoming popular as a method to generate recommendations for
users of an online meeting place. The recommendations are generated from the collective
user experiences and preferences, yet personalized for each user—hence, the name collabo-
rative filtering [7]. Examples of community sites where members use collaborative filtering
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to find potentially interesting items include Last.fm (a music recommender system) and
StumbleUpon (a web page recommender system). Used by a retailer collaborative filtering
is a useful tool to target-advertise items to its customers; items that a customer is likely
to like, yet was unlikely to have discovered on his own because of the seer number of items
available. Thus, a merchant can induce demand for its less known items. For example,
Netflix, a movie-rental company, uses collaborative filtering to create demand for older
and less known movies by advertising them to users who might like those movies. Other
stores who use collaborative filtering to manage demand and enhance user experience
include Amazon.com, iTunes, and Tivo.

There is a large research literature on collaborative filtering from a number of perspec-
tives [1]. The goal of a collaborative filtering based recommender system is: given a user’s
ratings on a subset of items and its peers’ ratings on possibly different subsets of items, to
predict among the items that the user has not yet rated which ones he would rate highly.
The algorithm treats two users as similar if they rate common items similarly. Two items
are considered similar if they have received similar ratings from users who have rated
them both. The idea is to make a recommendation from the items liked by a user’s similar
users. This can be thought of as automating the spread of information through word-of-
mouth [8].

One approach in collaborative filtering is to learn a model that explains how the rat-
ings are generated and then using this model to make predictions about the users.
Notable among the model based collaborative filtering works is the Flexible Mixture
Model (FMM) where two latent variables are used to model the user behavior and item
characteristics separately [9]. This leads to improved performance over the models, such as
Aspect Model, where single latent variable is used to characterize the user and the item
distribution[5]. Often the model based algorithms are designed using Bayesian Networks.
This framework allows us to systematically incorporate our intuition about the rating gen-
eration process in the model.

Most of the current literature discuss methods to use ratings with only one component.
However, when we have ratings with multiple components spanning more than one aspect
of an item, we have more information about the user’s preferences and an opportunity to
generate more accurate recommendations. Recently there has been a growing interest in
the research community in effective use of such multi-component ratings [1]. Recently
Yahoo Movies has started collecting ratings along multiple aspects of a movie, such as,
story, acting, visuals, direction. Such developments and the limited amount of work that
has been done in integrating multiple components of ratings to generate improved recom-
mendations has been the motivation behind this work.

In this work we have described a model based approach to generate recommendations
using a mixture model that uses multiple components of the ratings. Experiments on a
movie dataset show that it leads to improved recommendation when we use limited
amount of training data. However, we did not find any gain from using multiple compo-
nents when we use more data for training. We believe that our ability to generate better
predictions with small amounts of traiing data meets a real world requirement in the use
of collaborative filtering systems.
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2 Multi-component rating collaborative filtering

Data This work has been facilitated by the availability of component rating data from
Yahoo Movies web-site. Each record of the rating data consists of seven variables: item or
movie id (I), user id (U), ratings on story (S), acting (A), visuals (V ), direction(D) and
overall (O) quality of the movie. The ratings were converted to 0− 4 integers (A→ 4, B→

3, C → 2, D → 1, F → 0). Ratings from users who have rated more than 20 movies were
used so that we shall have enough training and test data for each user. After this filtering
there were 45892 records, 1058 unique users and 3430 unique movies.

The intuition We expect that by rating multiple aspects of an item users provide richer
information about their preferences. Consider the following example, where two users have
given similar low Overall ratings to a movie.

User Movie story acting visuals direction overall
u1 m1 4 0 1 0 1
u2 m1 1 0 0 4 1

Table 1. An example of multi-component rating (all ratings are out of 5)

The component ratings suggest that the user u1 might like other movies that have a
story similar to m1, while user u2 might like a movie that has been directed by the same
director or a director with similar style. Hence, if we can effectively use the information in
the component ratings provided by the users, we should be able to make more accurate
recommendations.

The problem When a user likes a movie, he, in general, rates the components of the
movie higher. Therefore, the components will be correlated (see Figure 1). From the cor-
relation matrix it seems that the components vary together and do not give much inde-
pendent units of information. In fact, a principal component analysis on the correlation
matrix shows that the first principal component explains 84.5% of the total variance. This
phenomenon of observing a higher than expected correlation between ratings is known as
the Halo effect in the psychometric literature. One important reason for Halo is that the
users rate components, based on their overall impression [10].

S A V D O
S 1.00 0.79 0.82 0.74 0.87
A 1.00 0.81 0.73 0.83
V 1.00 0.79 0.88
D 1.00 0.80
O 1.00

Figure 1. Correlation among rating
variables.
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Figure 2. The BayesNet encoding conditional
independence

The solution There are two intuitions outlined in last two paragraphs:

1. There is distinguishing information in the variation of components of ratings even
when Overall ratings agree,

2. The Overall rating might be the inducer of high correlation among components.

This lead us to compute the partial correlation among the component ratings while con-
trolling for the effect of Overall rating. We found that the average inter-component corre-
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lation among variables S, A, V , D reduces from 0.78 to 0.26. As all correlations are posi-
tive we should expect some reduction in correlation when computing partial correlations.
However, the average partial correlation among the variables is the least when we control
for the variable O among the possible five variables. The average partial correlations when
we controlled for S,A,V,D were 0.47, 0.53, 0.35 and 0.60 respectively. This confirms our
intuition that the Overall rating is the highest correlation inducing variable. A similar
approach is taken by Holzbach who asserts that global impression rating is the cause of
high correlation among the components and ameliorates this by partialing out the effect of
global impression rating [6].

The application The observation that controlling for the Overall rating leads to lowest
dependence among the component variables leads to the BayesNet shown in Figure 2. It
states that the component variables are independent conditional on Overall variable. Note
that we do not make an independent assertion among component. Instead we assert that
the components are dependent with each other via only the Overall rating. Empirically we
shall observe some residual dependence among the rating components (partial correlations
are not all zero). This is a limitation of assuming that a single variable can explain the
correlation between pairs of components. A model where we allow multiple nodes to
explain dependency among pairs of variables would explain more of these dependencies,
but, will be more complex. Embedding this BayesNet in the Flexible Mixture Model we
get the model shown in Figure 3(b).
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Figure 3. (a) FMM with one rating component by Luo Si and Rong Jin[9], (b) FMM with mul-
tiple component with dependency structure, (c) Naive FMM with multiple component without
dependency structure.

In a BayesNet diagram a variable is independent of its non-descendents conditional on
its parent(s). The original FMM asserts that rating variable R, user variable U , and item
variable I are conditionally independent of each other given latent variables Zu and Zi.
Latent variable Zu is used to characterize the distribution of U and the latent variable Zi

is used to characterize the distribution of I.
We embed the distribution of five rating components in the FMM BayesNet (Figure

3(b)), while making use of the observed conditional independence among the rating com-
ponents (Figure 2). This modified model additionally asserts that the component ratings
are conditionally independent of each other given the latent variables Zu, Zi and the
Overall rating. In Figure 3(c) we present the naive model which assumes the components
to offer independent units of information.
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Learning and prediction The conditional independence assumptions allow us to fac-
torize the joint distribution over all variables as a product of conditional probability
tables(CPT). To estimate these CPTs we need to follow some iterative approximation
algorithm such as Expectation Maximization [3] because we have two latent variables.
After estimating the CPTs to make a prediction about the Overall rating (O) for a user-
item pair (U , I), we marginalize away all other variables from the joint distribution and
get the joint distribution of these three. Then we can find conditional distribution over O

given values of U and I, and make a prediction using this conditional distribution. In the
original FMM, mean of this distribution was used to make a prediction. But, we believe
that the mode is more appropriate since the ratings are treated as multinomial.

3 Results and discussion

We use a randomly selected fraction of each user’s ratings for training and the remaining
for testing. Mean Absolute Error (MAE) of the predictions were computed to evaluate the
suitability of the methods when the task is to predict the future rating accurately. These
algorithms were also evaluated for their effectiveness in retrieving the items that the active
user has rated highly. This was done using a precision-recall curve, in which fraction of
retrieved items that were relevant (precision) was plotted against the fraction of all rele-
vant items that were retrieved (recall) [2].

The MAE was plotted against the fraction of data that was used for training (Figure
4). For each point in the plot 30 random train-test splits were made, keeping the ratio at
the given value, and average is taken. The same train-test set was used for all the models.
Hence, we got paired readings. We did a pairwise t-test and found that all differences
between algorithms are significant.
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Figure 4. Plot of errors by fraction of data used for training.

We can see from the Figure 4 that naively embedding component ratings as indepen-
dent variables in FMM give the highest error. This is not surprising since the component
ratings are highly correlated. Treating them as independent variables leads to over-
counting of the evidence.

Results and discussion 5



Using mode of the distribution to make a prediction leads to fewer error than using
the expectation (done in original FMM model).

Comparing the model that uses only Overall rating with the model that uses five com-
ponent structure with the dependence among them we find that when we use less data for
training using multiple components leads to lower error. But, when we use more data for
training using only overall component leads to lower error.

The precision-recall curve for the algorithms are plotted in Figure 5.
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Figure 5. Retrieval performance of algorithm using dependency structure among the components,
using only overall rating and algorithm using components as if they were independent.

As we can see when the training fraction is low the difference between the the three
algorithms is the most pronounced. The algorithm with discovered structure gives the
highest precision at each recall level followed by the method using only the Overall com-
ponent. The algorithm that assumes independence among the component ratings leads to
lowest precision. As we use more and more training data the difference between these
algorithms diminishes. The interesting point to note here is that although when using
only overall as we use more and more training data we get a lower Mean Absolute Error
than using all components, it does not perform better in selecting top-N items. As
pointed out in [4] these metrics measure two different aspects of the performance of the
algorithms and are often not correlated. One must use the appropriate evaluation metric
to measure the suitability of an algorithm for the task at hand.

4 Scope for future work

We have illustrated a way to use multiple components of ratings in a collaborative filtering
algorithm. However, further research should be done using a more complex model that
can explain the remaining residual dependencies. Another interesting problem would be to

6 Section 4



examine the stability of ratings of individual rater over time. A formal analysis of useful-
ness of components of rating in predicting ratings on unknown (user, item) pair would cer-
tainly be interesting.
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