Problem 1

First we formulate the two programs into KAT.

```
while b do {
    p;
    while c do q
}
can be expressed as
```

$$
\begin{equation*}
\left(b p(c q)^{*} \bar{c}\right)^{*} \bar{b} \tag{1}
\end{equation*}
$$

and

```
if b then {
    p;
    while b\veec do {
        if c then q else p
    }
}
```

can be expressed as

$$
\begin{equation*}
b p((b+c)(c q+\bar{c} p))^{*} \overline{b+c}+\bar{b} \tag{2}
\end{equation*}
$$

Because $\overline{b+c}=\bar{c} \bar{b}$ and

$$
\begin{aligned}
(b+c)(c q+\bar{c} p) & =b c q+b \bar{c} p+c c q+c \bar{c} p \\
& =b c q+b \bar{c} p+c q \\
& =(b+1) c q+b \bar{c} p \\
& =c q+\bar{c} b p
\end{aligned}
$$

(2) can be transformed into

$$
\begin{equation*}
b p(c q+\bar{c} b p)^{*} \bar{c} \bar{b}+\bar{b} \tag{3}
\end{equation*}
$$

Then we use the rule $1+p p^{*}=p^{*}$ on (1). We get

$$
\begin{align*}
\left(b p(c q)^{*} \bar{c}\right)^{*} \bar{b} & =\left(1+\left(b p(c q)^{*} \bar{c}\right)\left(b p(c q)^{*} \bar{c}\right)^{*}\right) \bar{b} \\
& =b p(c q)^{*} \bar{c}\left(b p(c q)^{*} \bar{c}\right)^{*} \bar{b}+\bar{b} \tag{4}
\end{align*}
$$

This transformation correspond to loop unwinding operation, which turns the original program into

```
if b then {p; while c do q;
```

 while \(b\) do \{
 \(p\);
 while \(c\) do \(q\)
 \}
 \}

Now we can see that $p(q p)^{*}=(p q)^{*} p$ may be applied on part in red in (4). We apply it and get

$$
b p(c q)^{*}\left(\bar{c} b p(c q)^{*}\right)^{*} \bar{c} \bar{b}+\bar{b}
$$

We see that we can apply this rule once more and get

$$
b p\left((c q)^{*} \bar{c} b p\right)^{*}(c q)^{*} \bar{c} \bar{b}+\bar{b}
$$

Now we can see the rule $\left(p^{*} q\right)^{*} p^{*}=(p+q)^{*}$ can be applied to the red part with substitutions $p=c q$ and $q=\bar{c} b p$. Apply it and we get

$$
b p(c q+\bar{c} b p)^{*} \bar{c} \bar{b}+\bar{b}
$$

which equals (3). This proves the programs are equal.

