Subject: mailing-list for TeXmacs Users
List archive
From : Luca <address@hidden>- To: address@hidden
- Subject: No images in pdf or printed output
- Date: Mon, 28 Nov 2005 11:40:55 +0100
I am trying to print a long document with many linked images.
In the document the images are correclty displayed.
When I print or export to pdf I get only blank space instead of images.
Any suggestion?
I include the files in question
PS
I am using Texmacs 1.0.5.10 on Debian unstable.
Attachment:
fit_dec0.985_0_6.pdf
Description: Adobe PDF document
Attachment:
fit_dec0.985_1_6.pdf
Description: Adobe PDF document
<TeXmacs|1.0.5.10> <style|generic> <\body> <section|Primi fit> Inanzitutto sappiamo che il correlatore si comporta come: <\equation*> D(t)\<sim\>\<mu\>+<frac|e<rsup|-M*t>|t<rsup|<frac|3|2>>>+<frac|e<rsup|-M(L-*t)>|(L-t)<rsup|<frac|3|2>>> </equation*> Il caso piu' semplice consiste nel tralasciare il secondo termine e concentrarsi sui punti in cui\ <\equation*> e<rsup|-M(L-*t)>\<sim\>0 </equation*> In questo caso facendo la derivata del logaritmo si ottiene: <\equation*> <frac|\<partial\>|\<partial\>t>ln D(t)=<frac|1|\<mu\>+<frac|e<rsup|-M*t>|t<rsup|<frac|3|2>>>><left|(><frac|-M*e<rsup|-M*t>|t<rsup|<frac|3|2>>>-<frac|3|2><frac|*e<rsup|-M*t>|t<rsup|<frac|5|2>>><right|)> </equation*> Supponiamo inoltre di essere in una situazione in cui <with|mode|math|\<mu\>\<gg\>1> otteniamo allora: <\equation*> <frac|\<partial\>|\<partial\>t>ln D(t)=<frac|1|\<mu\>><left|(>1-<frac|e<rsup|-M*t>|\<mu\>*t<rsup|<frac|3|2>>>+\<ldots\>.<right|)><left|(><frac|-M*e<rsup|-M*t>|t<rsup|<frac|3|2>>>-<frac|3|2><frac|*e<rsup|-M*t>|t<rsup|<frac|5|2>>><right|)> </equation*> Questo a prim ordine in <with|mode|math|e<rsup|<rsub|-M*t>>> diventa: <\equation*> <frac|\<partial\>|\<partial\>t>ln D(t)=<frac|1|\<mu\>><frac|e<rsup|-M*t>|t<rsup|<frac|3|2>>><left|(>-M-<frac|3|2><frac|*|t<rsup|>><left|)> </equation*> La forma adeguata per provare il fit e': <\equation*> <frac|\<partial\>|\<partial\>t>ln D(t)=A*<frac|e<rsup|-M*t>|t<rsup|<frac|3|2>>>+B*<frac|e<rsup|-M*t>|t<rsup|<frac|5|2>>> </equation*> Non siamo in grado di distinguere i due termini. Una prima approssimazione e' cercare eliminare la correzione infrarossa e fare il fit con solo il decadimento esponenziale. <\equation*> <frac|\<partial\>|\<partial\>t>ln D(t)=C+A*e<rsup|-M*t>* </equation*> Questo fit da un risultato plausibile ma e' poco giustificato. Cerchiamo di riprendere la espressione precedente e lavorare su qualche approssimazione <\equation*> D(t)\<sim\>\<mu\>+<frac|e<rsup|-M*t>|t<rsup|<frac|3|2>>>+<frac|e<rsup|-M(L-*t)>|(L-t)<rsup|<frac|3|2>>> </equation*> Supponiamo che la derivata la facciamo numerica come <with|mode|math|f<rprime|'>(t)=f(t)-f(t-1)>. Quindi la derivata del logaritmo diventa <with|mode|math|<frac|d|dt>log (f(t))=<frac|f(t)-f(t-1)|f(t)>=1-<frac|f(t-1)|f(t)>>. Nel nostro caso in prima approssimazione <with|mode|math|f(t)=\<mu\>+><with|mode|math|e<rsup|-M*t>><with|mode|math|+e<rsup|-M(L-*t)>>\ Quindi possiamo cercare di fare un fit con la seguente espressione: <\equation*> <frac|\<partial\>|\<partial\>t>ln D(t)=1-<frac|\<mu\>+a*e<rsup|-M*t>+b*e<rsup|-M*(L-t)>|\<mu\>+*e<rsup|-M*t>+e<rsup|-M(L-*t)>> </equation*> In questo caso <with|mode|math|a=e<rsup|M>, b=e<rsup|-M>>. Supponiamo adesso che <with|mode|math|\<mu\>\<gg\>1>. Allora possiamo sviluppare il denominatore in potenze di <with|mode|math|1/\<mu\>>. E otteniamo a prim'ordine: <\equation*> <frac|\<partial\>|\<partial\>t>ln D(t)=1-<left|(>1+<frac|a*e<rsup|-M*t>+b*e<rsup|-M*(L-t)>|\<mu\>><right|)><left|(>1-*<frac|e<rsup|-M*t>+e<rsup|-M(L-*t)>|\<mu\>><right|)> </equation*> <\equation*> <frac|\<partial\>|\<partial\>t>ln D(t)=<frac|(1-a)*e<rsup|-M*t>+(1-b)*e<rsup|-M*(L-t)>|\<mu\>> </equation*> <section|Primi risultati numerici: solo decadimento> <subsection|6x6x6x12 10000 sweeps e 1500 termalizzazione 1Hb 3 or> Nel caso di un reticolo piccolo abbiamo dei primi risultati dove mostriamo il fit considerando solo il caso <with|mode|math|<frac|\<partial\>|\<partial\>t>ln D(t)> e considerando entrambe i casi <with|mode|math|<frac|\<partial\>|\<partial\>t>ln D(t), -<frac|\<partial\>|\<partial\>t>ln D(t)>: \ <with|mode|math|\<beta\>=0.985> <postscript|fit_dec0.985_0_6.pdf|*4/8|*4/8||||> with <with|mode|math|\<chi\><rsup|2>=> <postscript|fit_dec0.985_1_6.pdf|*4/8|*4/8||||>with <with|mode|math|\<chi\><rsup|2>=1.953> \; </body> <\initial> <\collection> <associate|language|american> </collection> </initial> <\references> <\collection> <associate|auto-1|<tuple|1|?>> <associate|auto-2|<tuple|2|?>> <associate|auto-3|<tuple|2.1|?>> </collection> </references> <\auxiliary> <\collection> <\associate|toc> <vspace*|1fn><with|font-series|<quote|bold>|math-font-series|<quote|bold>|Primi fit> <datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>> <no-break><pageref|auto-1><vspace|0.5fn> <vspace*|1fn><with|font-series|<quote|bold>|math-font-series|<quote|bold>|Primi risultati numerici: solo decadimento> <datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>> <no-break><pageref|auto-2><vspace|0.5fn> <with|par-left|<quote|1.5fn>|6x6x6x12 10000 sweeps e 1500 termalizzazione 1Hb 3 or <datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>> <no-break><pageref|auto-3>> </associate> </collection> </auxiliary>
Attachment:
perlista.pdf
Description: Adobe PDF document
- No images in pdf or printed output, Luca, 11/28/2005
Archive powered by MHonArc 2.6.19.