Skip to Content.
Sympa Menu

texmacs-users - [TeXmacs] Float big table in two columns document

Subject: mailing-list for TeXmacs Users

List archive

[TeXmacs] Float big table in two columns document


Chronological Thread 
  • From: "Pablo S. Casas" <address@hidden>
  • To: address@hidden
  • Subject: [TeXmacs] Float big table in two columns document
  • Date: Mon, 21 Nov 2011 19:46:08 +0100 (CET)

Hi TeXmacs users:

This is a really urgent problem because we are about to send a
paper to a journal and we don't know how to make floating objects in
the whole width of a two-column document. Please, someone can share an
idea for solving this. Thanks a lot.

Pablo S. Casas


> I) Float big table in two columns document
>
> The attached document float.tm presents a big table which is right
> positioned when the document is formatted to 1 column. Instead if
> Document -> Paragraph -> Number of columns -> 2 is set, then the big
> table is formatted in one column, not in the whole document width. Is
> it possible in two-column documents to have a float big table spanned
> to two columns? If the big table is not float everything is OK.

<TeXmacs|1.0.7.14>

<style|<tuple|article|mismacros|maxima|varsession>>

<\body>
<section|Conclusiones>

\;

<subsection|Trozos>

<\float|float|t>

<big-table|<tabular*|<tformat|<cwith|1|-1|1|1|cell-rborder|1ln>|<cwith|1|1|1|-1|cell-bborder|1ln>|<cwith|1|1|1|-1|cell-bborder|1ln>|<cwith|1|-1|1|1|cell-lborder|0ln>|<cwith|1|-1|1|1|cell-halign|l>|<cwith|1|-1|2|2|cell-halign|l>|<cwith|1|-1|2|2|cell-lborder|1ln>|<cwith|1|-1|2|2|cell-rborder|0ln>|<cwith|1|-1|3|3|cell-lborder|1ln>|<cwith|1|-1|3|3|cell-halign|l>|<cwith|4|4|1|-1|cell-tborder|1ln>|<cwith|6|6|1|-1|cell-tborder|1ln>|<cwith|8|8|1|-1|cell-tborder|1ln>|<cwith|10|10|1|-1|cell-tborder|1ln>|<cwith|12|12|1|-1|cell-tborder|1ln>|<cwith|13|13|1|-1|cell-bborder|1ln>|<cwith|6|6|1|-1|cell-halign|l>|<cwith|2|2|1|1|cell-row-span|2>|<cwith|1|-1|1|1|cell-valign|c>|<cwith|1|-1|2|2|cell-valign|c>|<cwith|2|2|2|2|cell-row-span|2>|<cwith|4|4|1|1|cell-row-span|2>|<cwith|4|4|2|2|cell-row-span|2>|<cwith|6|6|1|1|cell-row-span|2>|<cwith|6|6|2|2|cell-row-span|2>|<cwith|8|8|1|1|cell-row-span|2>|<cwith|8|8|2|2|cell-row-span|2>|<cwith|10|10|1|1|cell-row-span|2>|<cwith|10|10|2|2|cell-row-span|2>|<cwith|12|12|1|1|cell-row-span|2>|<cwith|12|12|2|2|cell-row-span|2>|<cwith|12|12|1|-1|cell-bborder|1ln>|<cwith|13|13|1|-1|cell-tborder|0ln>|<cwith|13|13|3|3|cell-tborder|0ln>|<cwith|12|12|3|3|cell-bborder|0ln>|<table|<row|<cell|<math|<around*|(|e,h<rsub|1>,h<rsub|2>|)>>>|<cell|Reversor>|<cell|<math|q=<around*|(|x,y,z|)>>,

<math|p=<around*|(|u,v,w|)>>>>|<row|<cell|<math|<around*|(|0,\<lambda\><rsub|1>,\<lambda\><rsub|2>|)>>>|<cell|<math|R>>|<cell|<math|x<rsub|l><rsup|2>=<with|math-display|true|*<frac|a<rsub|l>*<around*|(|a<rsub|l>-\<lambda\><rsub|1>|)>*<around*|(|a<rsub|l>-\<lambda\><rsub|2>|)>|<around*|(|a<rsub|l>-a<rsub|m>|)>*<around*|(|a<rsub|l>-a<rsub|n>|)>>>>,>>|<row|<cell|>|<cell|>|<cell|<math|p=<sqrt|<with|math-display|true|<frac|a*b*c|\<lambda\><rsub|1>*\<lambda\><rsub|2>>>>*<around*|(|<with|math-display|true|<frac|x|a>>,<with|math-display|true|<frac|y|b>>,<with|math-display|true|<frac|z|c>>|)>>>>|<row|<cell|<math|e=0>,

<math|<around*|{|h<rsub|1>,h<rsub|2>|}>=<around*|{|a<rsub|l>,\<lambda\><rsub|j>|}>>>|<cell|<math|R<rsub|x<rsub|l>>>>|<cell|<math|x<rsub|l>=0>,

<math|x<rsub|m><rsup|2>\<nocomma\>=<with|math-display|true|<frac|a*<rsub|m><around*|(|a<rsub|m>-\<lambda\><rsub|j>|)>|a<rsub|m>-a<rsub|n>>>>,>>|<row|<cell|>|<cell|>|<cell|<math|u<rsub|l><rsup|2>=<with|math-display|true|<frac|a<rsub|l>-\<lambda\><rsub|k>|a<rsub|l>>>>,

<math|u<rsub|m>=a<rsub|n>x<rsub|m><sqrt|<with|math-display|true|<frac|\<lambda\><rsub|k>|a
b c \<lambda\><rsub|j>>>>>>>|<row|<cell|<math|e=0>,

<math|<around*|{|h<rsub|1>,h<rsub|2>|}>=<around*|{|a<rsub|m>,a<rsub|n>|}>>>|<cell|<math|R<rsub|x<rsub|m>x<rsub|n>>>>|<cell|<math|x<rsub|l>=\<pm\><sqrt|a<rsub|l>>>,

<math|x<rsub|m>=x<rsub|n>=0>,>>|<row|<cell|>|<cell|>|<cell|<math|u<rsub|l><rsup|2>=<with|math-display|true|*<frac|\<lambda\><rsub|1>*\<lambda\><rsub|2>|a<rsub|m>*a<rsub|n>>>>,

<math|u<rsub|m><rsup|2>=<with|math-display|true|*<frac|<around*|(|a<rsub|m>-\<lambda\><rsub|1>|)>*<around*|(|a<rsub|m>-\<lambda\><rsub|2>|)>|a<rsub|m>*<around*|(|a<rsub|m>-a<rsub|n>|)>>>>>>|<row|<cell|<math|<around*|{|e,h<rsub|1>,h<rsub|2>|}>=<around*|{|a<rsub|l>,\<lambda\><rsub|1>,\<lambda\><rsub|2>|}>>>|<cell|<math|f\<circ\>R<rsub|x<rsub|l>>>>|<cell|<math|x<rsub|l><rsup|2>=<with|math-display|true|*<frac|a<rsub|l>*\<lambda\><rsub|1>*\<lambda\><rsub|2>|a<rsub|m>a<rsub|n>>>>,

<math|x<rsub|m><rsup|2>=<with|math-display|true|*<frac|<around*|(|a<rsub|m>-\<lambda\><rsub|1>|)>*<around*|(|a<rsub|m>-\<lambda\><rsub|2>|)>|a<rsub|m>-a<rsub|n>>>>,>>|<row|<cell|>|<cell|>|<cell|<math|u<rsub|l>=\<pm\>1>,

<math|u<rsub|m>=0>>>|<row|<cell|<math|<around*|{|e,h<rsub|1>,h<rsub|2>|}>=<around*|{|a<rsub|m>,a<rsub|n>,\<lambda\><rsub|j>|}>>>|<cell|<math|f\<circ\>R<rsub|x<rsub|m>x<rsub|n>>>>|<cell|<math|x<rsub|l><rsup|2>=a<rsub|l>-\<lambda\><rsub|k>>,
<math|x<rsub|m>=u<rsub|m><sqrt|<with|math-display|true|<frac|a<rsub|m>
a<rsub|n> \<lambda\><rsub|k>|a<rsub|l>
\<lambda\><rsub|j>>>>>,>>|<row|<cell|>|<cell|>|<cell|<math|u<rsub|l>=0>,

<math|u<rsub|m><rsup|2>=<with|math-display|true|*<frac|a<rsub|m>-\<lambda\><rsub|j>|a<rsub|m>-a<rsub|n>>>>>>|<row|<cell|<math|<around*|(|c,b,a|)>>>|<cell|<math|f\<circ\>R<rsub|x*y*z>>>|<cell|<math|u<rsub|l><rsup|2>=<with|math-display|true|*<frac|<around*|(|a<rsub|l>-\<lambda\><rsub|1>|)>*<around*|(|a<rsub|l>-\<lambda\><rsub|2>|)>|<around*|(|a<rsub|l>-a<rsub|m>|)>*<around*|(|a<rsub|l>-a<rsub|n>|)>>>>,>>|<row|<cell|>|<cell|>|<cell|<math|q=<with|math-display|true|<sqrt|<frac|a*b*c|\<lambda\><rsub|1>*\<lambda\><rsub|2>>>>*<around*|(|u,v,w|)>>>>>>>|Likewise,
we present the corresponding <math|<around*|(|q,p|)>> formulae.>
</float>

<subsection|Symmetries through elliptic coordinates>

We give a complete classification of the symmetry sets, in connection with
the vertexes in elliptic coordinates they come from. The next proposition
is summarized in table <reference|vértices y reversores>.

<\lemma>
<dueto|Characterization of reversible maps> <label|lem:ReversibleMaps>A
map <math|f> is reversible if and only if it can be factorized as the
composition of two involutions, in which case both of them are reversors
of <math|f>.\
</lemma>

<\duda>
<\proof>
Let us assume that <math|f> is <math|<wide|r|~>>-reversible. Then
<math|<wide|r|^>=f\<circ\><wide|r|~>=<wide|r|~>\<circ\>f<rsup|-1>> is
another reversor, because:

<\enumerate-numeric>

<item><with|mode|math|f\<circ\><wide|r|^>=f\<circ\><wide|r|~>\<circ\>f<rsup|-1>=<wide|r|^>\<circ\>f<rsup|-1>>,


<item><with|mode|math|<wide|r|^><rsup|2>=<wide|r|^>\<circ\><wide|r|^>=<wide|r|~>\<circ\>f<rsup|-1>\<circ\>f\<circ\><wide|r|~>=<wide|r|~><rsup|2>=<Identity>>.
</enumerate-numeric>

Therefore, the map
<math|f=f\<circ\><wide|r|~><rsup|2>=<wide|r|^>\<circ\><wide|r|~>>
is the composition of two involutions.

On the other hand, if <math|f=<wide|r|^>\<circ\><wide|r|~>> and
<math|<wide|r|^><rsup|2>=<wide|r|~><rsup|2>=<Identity>>, then:

<\enumerate-numeric>

<item><with|mode|math|f\<circ\><wide|r|~>\<circ\>f=<wide|r|^>\<circ\><wide|r|~><rsup|2>\<circ\><wide|r|^>\<circ\><wide|r|~>=<wide|r|^><rsup|2>\<circ\><wide|r|~>=<wide|r|~>>,


<item><with|mode|math|f\<circ\><wide|r|^>\<circ\>f=<wide|r|^>\<circ\><wide|r|~>\<circ\><wide|r|^><rsup|2>\<circ\><wide|r|~>=<wide|r|^>\<circ\><wide|r|~><rsup|2>=<wide|r|^>>,
</enumerate-numeric>

so both involutions <math|<wide|r|^>> and <math|<wide|r|~>> are
reversors of the map <math|f>.
</proof>
</duda|El lema, ¾está publicado en alguna parte?|Según
<cite|LambRoberts1998>, aparece en Birkhoff, G.D., (1915). The restricted
problem of three bodies. Rend. Circ. Mat. Palermo 39, 265-334.>

<\proposition>
<label|clasificación de vértices>Let us denote
<math|<with|math-font|cal**|C><rsub|T>> as the cuboid:

<\equation*>

<with|math-font|cal**|C><rsub|T>=<choice|<tformat|<table|<row|<cell|<around*|[|0,\<lambda\><rsub|1>|]>\<times\><around*|[|c,\<lambda\><rsub|2>|]>\<times\><around*|[|b,a|]>,>|<cell|T=EH1,>>|<row|<cell|<around*|[|0,c|]>\<times\><around*|[|\<lambda\><rsub|1>,\<lambda\><rsub|2>|]>\<times\><around*|[|b,a|]>,>|<cell|T=<with|math-font-shape|right|H1H1>,>>|<row|<cell|<around*|[|0,\<lambda\><rsub|1>|]>\<times\><around*|[|c,b|]>\<times\><around*|[|\<lambda\><rsub|2>,a|]>,>|<cell|T=EH2,>>|<row|<cell|<around*|[|0,c|]>\<times\><around*|[|\<lambda\><rsub|1>,b|]>\<times\><around*|[|\<lambda\><rsub|2>,a|]>,>|<cell|T=<with|math-font-shape|right|H1H2>,>>>>>
</equation*>

where elliptic coordinates take place in a billiard trajectory. Then,
every vertex of <math|<with|math-font|cal**|C><rsub|T>> corresponds to a
SO.
</proposition>

\;

\;
</body>

<\initial>
<\collection>
<associate|font-base-size|12>
<associate|language|spanish>
<associate|page-medium|paper>
<associate|par-columns|1>
<associate|preamble|false>
</collection>
</initial>

<\references>
<\collection>
<associate|OPS en 2D|<tuple|1|9>>
<associate|auto-1|<tuple|1|1>>
<associate|auto-10|<tuple|9|6>>
<associate|auto-11|<tuple|10|6>>
<associate|auto-12|<tuple|10.1|6>>
<associate|auto-13|<tuple|10.2|8>>
<associate|auto-14|<tuple|10.3|9>>
<associate|auto-15|<tuple|1|11>>
<associate|auto-16|<tuple|11|12>>
<associate|auto-17|<tuple|12|?>>
<associate|auto-18|<tuple|11|?>>
<associate|auto-19|<tuple|12|?>>
<associate|auto-2|<tuple|1.1|1>>
<associate|auto-3|<tuple|1|1>>
<associate|auto-4|<tuple|1.2|1>>
<associate|auto-5|<tuple|1|4>>
<associate|auto-6|<tuple|2|3>>
<associate|auto-7|<tuple|3|4>>
<associate|auto-8|<tuple|4|5>>
<associate|auto-9|<tuple|8|6>>
<associate|clasificación de vértices|<tuple|4|2>>
<associate|lem:ReversibleMaps|<tuple|3|1>>
<associate|vértices y reversores|<tuple|1|2>>
</collection>
</references>

<\auxiliary>
<\collection>
<\associate|table>
<tuple|normal|Likewise, we present the corresponding
<with|mode|<quote|math>|<around*|(|q,p|)>> formulae.|<pageref|auto-3>>
</associate>
<\associate|toc>

<vspace*|1fn><with|font-series|<quote|bold>|math-font-series|<quote|bold>|1<space|2spc>Conclusiones>

<datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>>
<no-break><pageref|auto-1><vspace|0.5fn>

<with|par-left|<quote|1.5fn>|1.1<space|2spc>Trozos

<datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>>
<no-break><pageref|auto-2>>

<with|par-left|<quote|1.5fn>|1.2<space|2spc>Symmetries through elliptic
coordinates
<datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>>
<no-break><pageref|auto-4>>
</associate>
</collection>
</auxiliary>


Archive powered by MHonArc 2.6.19.

Top of Page