Skip to Content.
Sympa Menu

texmacs-users - Re: [TeXmacs] Float big table in two columns document

Subject: mailing-list for TeXmacs Users

List archive

Re: [TeXmacs] Float big table in two columns document


Chronological Thread 
  • From: kordenal <address@hidden>
  • To: address@hidden
  • Subject: Re: [TeXmacs] Float big table in two columns document
  • Date: Tue, 22 Nov 2011 08:21:38 +0300

Hello Pablo.

Is it that you want? (In attached file)

How I have made it:
TeXmacs 1.0.7.10
On new document select "Format -> Paragraph -> Number of column -> 1"
Insert big table and copy-paste your table.

On next line select "Format -> Paragraph -> Number of column -> 2"
And copy-paste your text.

I'm newbie. Probably, there is more elegant decision. But as it is "urgent problem" probably it will work.

Best regards
Denis



On Mon, 2011-11-21 at 19:46 +0100, Pablo S. Casas wrote:
Hi TeXmacs users:

   This is a really urgent problem because we are about to send a
paper to a journal and we don't know how to make floating objects in
the whole width of a two-column document. Please, someone can share an
idea for solving this. Thanks a lot.

   Pablo S. Casas


> I) Float big table in two columns document
>
> The attached document float.tm presents a big table which is right
> positioned when the document is formatted to 1 column. Instead if
> Document -> Paragraph -> Number of columns -> 2 is set, then the big
> table is formatted in one column, not in the whole document width. Is
> it possible in two-column documents to have a float big table spanned
> to two columns? If the big table is not float everything is OK.


Attachment: float_rework.pdf
Description: Adobe PDF document

<TeXmacs|1.0.7.10>

<style|generic>

<\body>
  <\with|par-columns|1>
    <big-table|<tabular*|<tformat|<cwith|1|-1|1|1|cell-rborder|1ln>|<cwith|1|1|1|-1|cell-bborder|1ln>|<cwith|1|1|1|-1|cell-bborder|1ln>|<cwith|1|-1|1|1|cell-lborder|0ln>|<cwith|1|-1|1|1|cell-halign|l>|<cwith|1|-1|2|2|cell-halign|l>|<cwith|1|-1|2|2|cell-lborder|1ln>|<cwith|1|-1|2|2|cell-rborder|0ln>|<cwith|1|-1|3|3|cell-lborder|1ln>|<cwith|1|-1|3|3|cell-halign|l>|<cwith|4|4|1|-1|cell-tborder|1ln>|<cwith|6|6|1|-1|cell-tborder|1ln>|<cwith|8|8|1|-1|cell-tborder|1ln>|<cwith|10|10|1|-1|cell-tborder|1ln>|<cwith|12|12|1|-1|cell-tborder|1ln>|<cwith|13|13|1|-1|cell-bborder|1ln>|<cwith|6|6|1|-1|cell-halign|l>|<cwith|2|2|1|1|cell-row-span|2>|<cwith|1|-1|1|1|cell-valign|c>|<cwith|1|-1|2|2|cell-valign|c>|<cwith|2|2|2|2|cell-row-span|2>|<cwith|4|4|1|1|cell-row-span|2>|<cwith|4|4|2|2|cell-row-span|2>|<cwith|6|6|1|1|cell-row-span|2>|<cwith|6|6|2|2|cell-row-span|2>|<cwith|8|8|1|1|cell-row-span|2>|<cwith|8|8|2|2|cell-row-span|2>|<cwith|10|10|1|1|cell-row-span|2>|<cwith|10|10|2|2|cell-row-span|2>|<cwith|12|12|1|1|cell-row-span|2>|<cwith|12|12|2|2|cell-row-span|2>|<cwith|12|12|1|-1|cell-bborder|1ln>|<cwith|13|13|1|-1|cell-tborder|0ln>|<cwith|13|13|3|3|cell-tborder|0ln>|<cwith|12|12|3|3|cell-bborder|0ln>|<table|<row|<cell|<math|<around*|(|e,h<rsub|1>,h<rsub|2>|)>>>|<cell|Reversor>|<cell|<math|q=<around*|(|x,y,z|)>>,
    <math|p=<around*|(|u,v,w|)>>>>|<row|<cell|<math|<around*|(|0,\<lambda\><rsub|1>,\<lambda\><rsub|2>|)>>>|<cell|<math|R>>|<cell|<math|x<rsub|l><rsup|2>=<with|math-display|true|*<frac|a<rsub|l>*<around*|(|a<rsub|l>-\<lambda\><rsub|1>|)>*<around*|(|a<rsub|l>-\<lambda\><rsub|2>|)>|<around*|(|a<rsub|l>-a<rsub|m>|)>*<around*|(|a<rsub|l>-a<rsub|n>|)>>>>,>>|<row|<cell|>|<cell|>|<cell|<math|p=<sqrt|<with|math-display|true|<frac|a*b*c|\<lambda\><rsub|1>*\<lambda\><rsub|2>>>>*<around*|(|<with|math-display|true|<frac|x|a>>,<with|math-display|true|<frac|y|b>>,<with|math-display|true|<frac|z|c>>|)>>>>|<row|<cell|<math|e=0>,
    <math|<around*|{|h<rsub|1>,h<rsub|2>|}>=<around*|{|a<rsub|l>,\<lambda\><rsub|j>|}>>>|<cell|<math|R<rsub|x<rsub|l>>>>|<cell|<math|x<rsub|l>=0>,
    <math|x<rsub|m><rsup|2>\<nocomma\>=<with|math-display|true|<frac|a*<rsub|m><around*|(|a<rsub|m>-\<lambda\><rsub|j>|)>|a<rsub|m>-a<rsub|n>>>>,>>|<row|<cell|>|<cell|>|<cell|<math|u<rsub|l><rsup|2>=<with|math-display|true|<frac|a<rsub|l>-\<lambda\><rsub|k>|a<rsub|l>>>>,
    <math|u<rsub|m>=a<rsub|n>x<rsub|m><sqrt|<with|math-display|true|<frac|\<lambda\><rsub|k>|a
    b c \<lambda\><rsub|j>>>>>>>|<row|<cell|<math|e=0>,
    <math|<around*|{|h<rsub|1>,h<rsub|2>|}>=<around*|{|a<rsub|m>,a<rsub|n>|}>>>|<cell|<math|R<rsub|x<rsub|m>x<rsub|n>>>>|<cell|<math|x<rsub|l>=\<pm\><sqrt|a<rsub|l>>>,
    <math|x<rsub|m>=x<rsub|n>=0>,>>|<row|<cell|>|<cell|>|<cell|<math|u<rsub|l><rsup|2>=<with|math-display|true|*<frac|\<lambda\><rsub|1>*\<lambda\><rsub|2>|a<rsub|m>*a<rsub|n>>>>,
    <math|u<rsub|m><rsup|2>=<with|math-display|true|*<frac|<around*|(|a<rsub|m>-\<lambda\><rsub|1>|)>*<around*|(|a<rsub|m>-\<lambda\><rsub|2>|)>|a<rsub|m>*<around*|(|a<rsub|m>-a<rsub|n>|)>>>>>>|<row|<cell|<math|<around*|{|e,h<rsub|1>,h<rsub|2>|}>=<around*|{|a<rsub|l>,\<lambda\><rsub|1>,\<lambda\><rsub|2>|}>>>|<cell|<math|f\<circ\>R<rsub|x<rsub|l>>>>|<cell|<math|x<rsub|l><rsup|2>=<with|math-display|true|*<frac|a<rsub|l>*\<lambda\><rsub|1>*\<lambda\><rsub|2>|a<rsub|m>a<rsub|n>>>>,
    <math|x<rsub|m><rsup|2>=<with|math-display|true|*<frac|<around*|(|a<rsub|m>-\<lambda\><rsub|1>|)>*<around*|(|a<rsub|m>-\<lambda\><rsub|2>|)>|a<rsub|m>-a<rsub|n>>>>,>>|<row|<cell|>|<cell|>|<cell|<math|u<rsub|l>=\<pm\>1>,
    <math|u<rsub|m>=0>>>|<row|<cell|<math|<around*|{|e,h<rsub|1>,h<rsub|2>|}>=<around*|{|a<rsub|m>,a<rsub|n>,\<lambda\><rsub|j>|}>>>|<cell|<math|f\<circ\>R<rsub|x<rsub|m>x<rsub|n>>>>|<cell|<math|x<rsub|l><rsup|2>=a<rsub|l>-\<lambda\><rsub|k>>,
    <math|x<rsub|m>=u<rsub|m><sqrt|<with|math-display|true|<frac|a<rsub|m>
    a<rsub|n> \<lambda\><rsub|k>|a<rsub|l>
    \<lambda\><rsub|j>>>>>,>>|<row|<cell|>|<cell|>|<cell|<math|u<rsub|l>=0>,
    <math|u<rsub|m><rsup|2>=<with|math-display|true|*<frac|a<rsub|m>-\<lambda\><rsub|j>|a<rsub|m>-a<rsub|n>>>>>>|<row|<cell|<math|<around*|(|c,b,a|)>>>|<cell|<math|f\<circ\>R<rsub|x*y*z>>>|<cell|<math|u<rsub|l><rsup|2>=<with|math-display|true|*<frac|<around*|(|a<rsub|l>-\<lambda\><rsub|1>|)>*<around*|(|a<rsub|l>-\<lambda\><rsub|2>|)>|<around*|(|a<rsub|l>-a<rsub|m>|)>*<around*|(|a<rsub|l>-a<rsub|n>|)>>>>,>>|<row|<cell|>|<cell|>|<cell|<math|q=<with|math-display|true|<sqrt|<frac|a*b*c|\<lambda\><rsub|1>*\<lambda\><rsub|2>>>>*<around*|(|u,v,w|)>>>>>>>|Likewise,
    we present the corresponding <math|<around*|(|q,p|)>> formulae.>
  </with>

  \;

  <\with|par-columns|2>
    <section|Conclusiones>

    <subsection|Trozos>

    <subsection|Symmetries through elliptic coordinates>

    We give a complete classification of the symmetry sets, in connection
    with the vertexes in elliptic coordinates they come from. The next
    proposition is summarized in table <reference|vértices y reversores>.

    <\lemma>
      <dueto|Characterization of reversible maps> <label|lem:ReversibleMaps>A
      map <math|f> is reversible if and only if it can be factorized as the
      composition of two involutions, in which case both of them are
      reversors of <math|f>.\ 
    </lemma>

    <\duda>
      <\proof>
        Let us assume that <math|f> is <math|<wide|r|~>>-reversible. Then
        <math|<wide|r|^>=f\<circ\><wide|r|~>=<wide|r|~>\<circ\>f<rsup|-1>> is
        another reversor, because:

        <\enumerate-numeric>
          <item><with|mode|math|f\<circ\><wide|r|^>=f\<circ\><wide|r|~>\<circ\>f<rsup|-1>=<wide|r|^>\<circ\>f<rsup|-1>>,

          <item><with|mode|math|<wide|r|^><rsup|2>=<wide|r|^>\<circ\><wide|r|^>=<wide|r|~>\<circ\>f<rsup|-1>\<circ\>f\<circ\><wide|r|~>=<wide|r|~><rsup|2>=<Identity>>.
        </enumerate-numeric>

        Therefore, the map <math|f=f\<circ\><wide|r|~><rsup|2>=<wide|r|^>\<circ\><wide|r|~>>
        is the composition of two involutions.

        On the other hand, if <math|f=<wide|r|^>\<circ\><wide|r|~>> and
        <math|<wide|r|^><rsup|2>=<wide|r|~><rsup|2>=<Identity>>, then:

        <\enumerate-numeric>
          <item><with|mode|math|f\<circ\><wide|r|~>\<circ\>f=<wide|r|^>\<circ\><wide|r|~><rsup|2>\<circ\><wide|r|^>\<circ\><wide|r|~>=<wide|r|^><rsup|2>\<circ\><wide|r|~>=<wide|r|~>>,

          <item><with|mode|math|f\<circ\><wide|r|^>\<circ\>f=<wide|r|^>\<circ\><wide|r|~>\<circ\><wide|r|^><rsup|2>\<circ\><wide|r|~>=<wide|r|^>\<circ\><wide|r|~><rsup|2>=<wide|r|^>>,
        </enumerate-numeric>

        so both involutions <math|<wide|r|^>> and <math|<wide|r|~>> are
        reversors of the map <math|f>.
      </proof>
    </duda|El lema, ¾está publicado en alguna parte?|Según
    <cite|LambRoberts1998>, aparece en Birkhoff, G.D., (1915). The restricted
    problem of three bodies. Rend. Circ. Mat. Palermo 39, 265-334.>

    <\proposition>
      <label|clasificación de vértices>Let us denote
      <math|<with|math-font|cal**|C><rsub|T>> as the cuboid:

      <\equation*>
        <with|math-font|cal**|C><rsub|T>=<choice|<tformat|<table|<row|<cell|<around*|[|0,\<lambda\><rsub|1>|]>\<times\><around*|[|c,\<lambda\><rsub|2>|]>\<times\><around*|[|b,a|]>,>|<cell|T=EH1,>>|<row|<cell|<around*|[|0,c|]>\<times\><around*|[|\<lambda\><rsub|1>,\<lambda\><rsub|2>|]>\<times\><around*|[|b,a|]>,>|<cell|T=<with|math-font-shape|right|H1H1>,>>|<row|<cell|<around*|[|0,\<lambda\><rsub|1>|]>\<times\><around*|[|c,b|]>\<times\><around*|[|\<lambda\><rsub|2>,a|]>,>|<cell|T=EH2,>>|<row|<cell|<around*|[|0,c|]>\<times\><around*|[|\<lambda\><rsub|1>,b|]>\<times\><around*|[|\<lambda\><rsub|2>,a|]>,>|<cell|T=<with|math-font-shape|right|H1H2>,>>>>>
      </equation*>

      where elliptic coordinates take place in a billiard trajectory. Then,
      every vertex of <math|<with|math-font|cal**|C><rsub|T>> corresponds to
      a SO.
    </proposition>
  </with>
</body>

<\initial>
  <\collection>
    <associate|language|british>
    <associate|page-type|a4>
    <associate|prog-scripts|maxima>
  </collection>
</initial>

<\references>
  <\collection>
    <associate|auto-1|<tuple|1|?>>
    <associate|auto-2|<tuple|1|?>>
    <associate|auto-3|<tuple|1.1|?>>
    <associate|auto-4|<tuple|1.2|?>>
    <associate|clasificación de vértices|<tuple|2|?>>
    <associate|lem:ReversibleMaps|<tuple|1|?>>
  </collection>
</references>

<\auxiliary>
  <\collection>
    <\associate|table>
      <tuple|normal|Likewise, we present the corresponding
      <with|mode|<quote|math>|<around*|(|q,p|)>> formulae.|<pageref|auto-1>>
    </associate>
  </collection>
</auxiliary>



Archive powered by MHonArc 2.6.19.

Top of Page