Subject: mailing-list for TeXmacs Users
List archive
From : Kris Kuhlman <address@hidden>- To: address@hidden
- Subject: equation numbering & referencing
- Date: Tue, 18 Jan 2005 11:46:26 -0700
Hi,
I have been using TeXmacs for a couple months now, and I must say I like it, but I have been having problems with equation numbers and referencing them in the text. I put an equation in, number it using mathematics -> number equation, put a reference next to it (as is described in the help), then I put a reference to the same label in the text. This puts a number down, but it is sometimes off by one, but elsewhere in the document, a reference to the same equation turns out correct.
I don't want to do this manually... is there anything someone sees is missing? I attached a copy of my first page, which illustrates my problem (bib not included, so citations don't work). The problems are the last two paragraphs. I write "Note that (<reference|eq:radialSep>) is the Cauchy-Euler 'equidimensional' equation." but it references eqn 2, rather than eqn 3, and the same thing happens below that.
Thanks for any help.
Kris
<TeXmacs|1.0.3.7>
<style|generic>
<\body>
<\make-title>
<title|AEM Steady-State Circular Inclusions>
</make-title>
<section|Governing Equation: Laplace's Equation>
In the following derivation <with|mode|math|h> is head, and
<with|mode|math|K> is hydraulic conductivity. Beginning with the most
general form of the steady-state groundwater flow equation
<\equation*>
<rsup|>\<nabla\>\<cdot\>(K\<nabla\>h)=0 \ <with|mode|text| or, when >K
<with|mode|text| is uniform, > K\<nabla\><rsup|2>h=0
</equation*>
which, in familiar rectangular coordinates simply is
<\equation*>
K<left|(><frac|\<partial\><rsup|2>h|\<partial\>x<rsup|2>>+<frac|\<partial\><rsup|2>h|\<partial\>y<rsup|2>>+<frac|\<partial\><rsup|2>h|\<partial\>z<rsup|2>><right|)>=0
</equation*>
To more efficiently deal with circular inclusions, the problem will be
dealt with in cylindrical coordinates, instead of rectangular. In plane
polar coordinates -- cylindrical coordinates invariant in the
<with|mode|math|z> direction (<with|mode|math|r> is radial distance,
<with|mode|math|\<theta\>> is the angle made with the positive x-axis) a
convenient form of the Laplace equation is
<\equation*>
K<left|(><frac|\<partial\><rsup|2>h|\<partial\>r<rsup|2>>+<frac|1|r><frac|\<partial\>h|\<partial\>r>+<frac|1|r<rsup|2>><frac|\<partial\><rsup|2><rsup|>h|\<partial\>\<theta\><rsup|2>><right|)>=0
</equation*>
expressed in terms of the confined aquifer discharge potential
(<with|mode|math|\<Phi\>=h K>), this becomes
<\equation>
<label|eq:Laplace.phi><frac|\<partial\><rsup|2>\<Phi\>|\<partial\>r<rsup|2>>+<frac|1|r><frac|\<partial\>\<Phi\>|\<partial\>r>+<frac|1|r<rsup|2>><frac|\<partial\><rsup|2><rsup|>\<Phi\>|\<partial\>\<theta\><rsup|2>>=0
</equation>
<section|Separation of Variables>
This procedure is similar to those outlined in the literature
(<cite|ozisikHC> 3-1 and <cite|GreenbergAdvEngMath> 20.3). \ First,
(<reference|eq:Laplace.phi>) is separated into radial and azimuthal
components, following the relationship
<\equation>
<label|eq:separation>\<Phi\>(r,\<theta\>)=R<rsub|>(r)\<Theta\>(\<theta\>).
</equation>
Substituting (<reference|eq:separation>) into (<reference|eq:Laplace.phi>),
grouping the like components, and dividing by <with|mode|math|\<Phi\>>,
leads to
<\equation*>
<frac|1|R><left|(><frac|\<partial\><rsup|2>R|\<partial\>r<rsup|2>>+<frac|1|r><frac|\<partial\>R<rsub|>|\<partial\>r><right|)>+<frac|1|r<rsup|2>><frac|1|\<Theta\>><frac|\<partial\><rsup|2><rsup|>\<Theta\>|\<partial\>\<theta\><rsup|2>>=0.
</equation*>
To satisfy this equality, both groups must be related through the arbitrary
separation constant
<\equation*>
<frac|1|\<Theta\>><frac|d<rsup|2><rsup|>\<Theta\>|d\<theta\><rsup|2>>=-v<rsup|2>
<with|mode|text|, and > <frac|1|R><left|(><frac|d<rsup|2>R|d
r<rsup|2>>+<frac|1|r><frac|d R|d r><right|)>-<frac|v<rsup|2>|r<rsup|2>>=0.
</equation*>
Re-arranging these equations leads to the following separated equations
<\eqnarray*>
<tformat|<table|<row|<cell|<frac|d<rsup|2><rsup|>\<Theta\>|d\<theta\><rsup|2>>+v<rsup|2>\<Theta\>=0,>|<cell|>|<cell|>>|<row|<cell|<label|eq:radialSep><frac|d<rsup|2>R|d
r<rsup|2>>+<frac|1|r><frac|d R|d
r>-<frac|v<rsup|2>|r<rsup|2>>R=0.>|<cell|>|<cell|<eq-number>>>>>
</eqnarray*>
Note that (<reference|eq:radialSep>) is the Cauchy-Euler 'equidimensional'
equation. These equations have the following general, orthogonal solutions
for integer values of the separation constant (eigenvalues of the problem)
<\eqnarray*>
<tformat|<table|<row|<cell|<label|eq:angGS>\<Theta\><rsub|v>(\<theta\>)=a<rsub|v>
sin(v\<theta\>)+b<rsub|v>
cos(v\<theta\>)>|<cell|>|<cell|<eq-number>>>|<row|<cell|<label|eq:radialGS>R<rsub|v>(r):<choice|<tformat|<table|<row|<cell|c<rsub|n>r<rsup|v>+d<rsub|n>r<rsup|-v>
<with|mode|text| for >v\<neq\>0>>|<row|<cell|c<rsub|0>+d<rsub|0> ln r
<with|mode|text| \ \ \ for >v=0>>>>>>|<cell|>|<cell|<eq-number>>>>>
</eqnarray*>
Utilizing the Sturm-Lioville theory, which states a quantity (e.g.,
<with|mode|math|\<Phi\>>) can be represented using an infinite sum of
orthogonal functions, put (<reference|eq:radialGS>) and
(<reference|eq:angGS>) back into (<reference|eq:separation>) which gives
the following form (sine and cosine evaluated at 0)
\
</body>
<\initial>
<\collection>
<associate|language|english>
<associate|page-bot|30mm>
<associate|page-even|30mm>
<associate|page-odd|30mm>
<associate|page-reduce-bot|15mm>
<associate|page-reduce-left|25mm>
<associate|page-reduce-right|25mm>
<associate|page-reduce-top|15mm>
<associate|page-right|30mm>
<associate|page-top|30mm>
<associate|page-type|a4>
<associate|par-width|150mm>
</collection>
</initial>
<\references>
<\collection>
<associate|auto-1|<tuple|1|?>>
<associate|auto-2|<tuple|2|?>>
<associate|eq:1|<tuple|1|?>>
<associate|eq:2|<tuple|2|?>>
<associate|eq:Laplace.phi|<tuple|1|?>>
<associate|eq:angGS|<tuple|3|?>>
<associate|eq:radialGS|<tuple|4|?>>
<associate|eq:radialSep|<tuple|2|?>>
<associate|eq:separation|<tuple|2|?>>
</collection>
</references>
<\auxiliary>
<\collection>
<\associate|bib>
ozisikHC
GreenbergAdvEngMath
</associate>
<\associate|toc>
<vspace*|1fn><with|font-series|<quote|bold>|math-font-series|<quote|bold>|Governing
Equation: Laplace's Equation>
<datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>>
<pageref|auto-1><vspace|0.5fn>
<vspace*|1fn><with|font-series|<quote|bold>|math-font-series|<quote|bold>|Separation
of Variables>
<datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>>
<pageref|auto-2><vspace|0.5fn>
</associate>
</collection>
</auxiliary>
- equation numbering & referencing, Kris Kuhlman, 01/18/2005
- Re: [TeXmacs] equation numbering & referencing, Juan Pablo Romero Bernal, 01/18/2005
- Re: [TeXmacs] equation numbering & referencing, Kris Kuhlman, 01/18/2005
- Re: [TeXmacs] equation numbering & referencing, Rudy . Sicard, 01/20/2005
- Re: [TeXmacs] equation numbering & referencing, Kris Kuhlman, 01/18/2005
- Re: [TeXmacs] equation numbering & referencing, Juan Pablo Romero Bernal, 01/18/2005
Archive powered by MHonArc 2.6.19.